The search for leptonic CP violation

Enrique Fernández Martínez

Evidence of physics beyond the SM

- Evidence of physics beyond the SM
- Many open questions:
 - Masses? Why so small??
 - Absolute mass scale?
 - Normal or inverted hierarchy?

- Evidence of physics beyond the SM
- Many open questions:
 - Masses? Why so small??
 - Absolute mass scale?
 - Normal or inverted hierarchy?
 - Mixing?
 - Large compared with CKM
 - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$?
 - CP violation?

- Evidence of physics beyond the SM
- Many open questions:
 - Masses? Why so small??
 - Absolute mass scale?
 - Normal or inverted hierarchy?
 - Mixing?
 - Large compared with CKM
 - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$?
 - CP violation?
 - Dirac or Majorana particles?

- Evidence of physics beyond the SM
- Many open questions:
 - Masses? Why so small??
 - Absolute mass scale?
 - Normal or inverted hierarchy?
 - Mixing?
 - Large compared with CKM
 - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$?
 - CP violation?
 - Dirac or Majorana particles?

Flavour

- Evidence of physics beyond the SM
- Many open questions:
 - Masses? Why so small??
 - Absolute mass scale?
 - Normal or inverted hierarchy?
 - Mixing?
 - Large compared with CKM
 - $\theta_{23} = 45^{\circ}$? Related to $\theta_{13} \neq 0^{\circ}$?
 - CP violation?
 - Dirac or Majorana particles?

Origin of matter

Flavour

- Evidence of physics beyond the SM
- Many open questions:

New generation of neutrino experiments to address these questions is now running!

Oscillation Parameters

- What we already know (1σ)
 - Solar sector $\begin{cases} \Delta m_{21}^2 = 7.45^{+0.19}_{-0.16} \cdot 10^{-5} \text{ eV}^2 \\ \sin^2 \theta_{12} = 0.306^{+0.012}_{-0.012} \end{cases}$

 - $\sin^2 \theta_{13} = 0.0229^{+0.002}_{-0.0019}$
- What we still don't know
 - $\delta = ?$
 - Mass hierarchy $s_{atm} = sign(\Delta m_{31}^2)$

M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1209.3023 www.nu-fit.org See also: D. V. Forero, M. Tortola, J. Valle 1205.4018 G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno 1205.5254

Plus non-oscillation searches:

Plot updated from M. Blennow, EFM, J. Lopez-Pavon and J. Menendez 1005.3240

The Golden channel in matter

$$P(\overrightarrow{v_e} \rightarrow \overrightarrow{v_\mu}) = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{atm}}{\widetilde{B}_{\mp}}\right)^2 \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right)^2 \quad \text{"atmospheric"}$$

$$+ c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{sol}}{A}\right)^2 \sin^2\left(\frac{AL}{2}\right) \quad \text{"solar"}$$

$$\text{"interference"} + \widetilde{J} \frac{\Delta_{sol}}{A} \frac{\Delta_{atm}}{\widetilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right) \cos\left(\pm \delta - \frac{\Delta_{atm}L}{2}\right)$$

Expanded in

$$\sin 2\theta_{13} \sim 0.3$$

$$\sin 2\theta_{13} \sim 0.3 \qquad \left(\frac{\Delta_{sol} L}{2}\right) \approx 0.05$$

where

$$\tilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$

$$A = \sqrt{2}G_F n_e$$
 $\widetilde{B}_{\mp} = |A \mp \Delta_{atm}|$

A. Cervera *et al.* hep-ph/0002108

Optimization of facilities for large θ_{13}

Signal systematics and not stats becomes the bottleneck for large θ_{13} , explore second peak? P. Coloma and EFM 1110.4583

Shoplist of present and future facilities

Experiment	Detector (kton)	Baseline (km) Power (MW)		Mean v E (GeV)	
T2K	22 WC	275	0.2-0.7	~1	
NOvA	13 scintillator	810	0.75	~2.5	
T2HK	560 WC	275	0.7	~1	
LBNF (DUNE)	30 LAr	1300	1.2	~3	
ESS	500 WC	540	5	~0.4	

T2K and NOvA currently running
T2HK and LBNF will hopefully be aproved soon

T2K, T2HK and ESS low E and short baseline → small matter effects, large WC det. Good for CP violation.

NOvA and LBNF high E and long baseline → large matter effects, smaller det. Good for mass hierarchy.

Sensitivities with present experiments

Sensitivities with present experiments

From M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1405.5439 www.nu-fit.org

Sensitivities to CPV

Plot adapted by P. Coloma from E. Baussan et al. 1309.7022

To plot these: compute $\Delta \chi^2 = \chi^2 (\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ

To plot these: compute $\Delta \chi^2 = \chi^2 (\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ

If $\Delta \chi^2 > 1$, 4, 9, 25 then CP conservation excluded at 1, 2, 3, 5 σ

To plot these: compute $\Delta \chi^2 = \chi^2(\delta = 0, \pi) - \chi^2_{min}$ for a given "true" δ

If $\Delta \chi^2 > 1$, 4, 9, 25 then CP conservation excluded at 1, 2, 3, 5 σ

Why 1, 4, 9, 25?

Wilk's theorem says $\Delta \chi^2$ should be distributed as χ^2 a with 1 dof

Wilk's theorem asumes linearity of the observables to have a χ^2

Wilk's theorem asumes linearity of the observables to have a χ^2

But δ is cyclic \rightarrow line becomes a segment or an ellipse...

Wilk's theorem asumes linearity of the observables to have a χ^2

But δ is cyclic \rightarrow line becomes a segment or an ellipse...

And degeneracies will also violate linearity...

No guarantee that the test statistic will follow a χ^2 distribution

Wilk's theorem asumes linearity of the observables to have a χ^2

But δ is cyclic \rightarrow line becomes a segment or an ellipse...

And degeneracies will also violate linearity...

No guarantee that the test statistic will follow a χ^2 distribution

M. Blennow, P. Coloma and EFM 1407.3274

M. Blennow, P. Coloma and EFM 1407.3274

For low performance, distribution falls much faster than χ^2 As the performance improves, first it falls slower and then approaches asymprocically a χ^2 M. Blennow, P. Coloma and EFM 1407.3274

For low performance, distribution falls much faster than χ^2 As the performance improves, first it falls slower and then approaches asymprocically a χ^2 M. Blennow, P. Coloma and EFM 1407.3274

Statistical fluctuations around the test point (δ =0) will have a characteristic size 1 = s R. For large s distance to circle is larger than line \rightarrow smaller difference with distance to point \rightarrow smaller test stat.

M. Blennow, P. Coloma and EFM 1407.3274

Statistical fluctuations around the test point (δ =0) will have a characteristic size 1 = s R. For small s distance to circle is smaller than line \rightarrow larger difference with distance to point \rightarrow smaller test stat.

For s=0 χ^2 is recovered

M. Blennow, P. Coloma and EFM 1407.3274

Present hint? Significance??

Present hint Significance

From J. Elevant and T. Schwetz 1506.07685

Present hint Significance

2D contour much closer to χ^2 approximation

From J. Elevant and T. Schwetz 1506.07685

Conclusions

- The large value of θ_{13} discovered opens the window to the measurement of the neutrino mass hierarchy and leptonic CP violation.
- T2K and NOvA will provide are providing the first \sim 2-3 σ indications over the next years. In order to reach 5 σ discovery, upgraded or new facilities will be needed.
- The optimization strategy for CPV changes for large θ_{13} : importance of systematic errors and the second oscillation peak over statistics and backgrounds.
- Deviations from χ^2 in present facilities. Necessary to carefully calibrate the χ^2 when assessing present hint from T2K+Daya Bay+Nova. Stay tunned!

Systematics

		$_{ m SB}$			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)						
Flux error signal ν	5%	7.5%	10%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	c	orrelate	$_{ m ed}$
Flux error signal $\bar{\nu}$	10%	15%	20%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated		
Background uncertainty	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio ν_e/ν_μ QE*	3.5%	11%	_	_	_	_
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	_	_	_	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%	_	_	_	_
Matter density	1%	2%	5%	1%	2%	5%

Systematics

Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics

Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics

Plot from the Physics Briefing Book: Input for the Strategy Group to the European Strategy for Particle Physics

Present hint? Significance??

For the present hint for δ the effect is very strong and huge correlations with θ_{23} should be explored to assess significance!

From M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz 1405.5439 www.nu-fit.org

Precision

P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651

